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Clique-factors: Hajnal—Szemerédi Theorem

« Simple, dense graphs G. 6(G): the minimum degree of G

* Hajnal-Szemerédi ‘70, Corradi-Hajnal '63: n-vertex graph G with
0(G) = (1 — 1/r)n contains K -factor.

* Generalized to F-factors by Alon-Yuster "00, Kithn-Osthus '09
* Algorithmic version: Hell-Kirkpatrick ‘83, H.-Treglown "20

* Hypergraph extension still unknown



For k-uniform Hypergraphs H

+* Forl <d <k, 5d(H) = min{deg(S) : | S| = d}.

» Keevash-Mycroft "11: n-vertex 3-graph H with 6,(H) > 3n/4 contains K j
-tactor.

“ The only known tight result on cliques besides those on matchings

* Along and involved proof using Hypergraph Regularity Lemmas and
Hypergraph Blow-up Lemma

“ A simpler proof found by Han. [2021]}



Clique-factors in random graphs

« (G(n, p): n-vertex graph, where each pair of vtxs form an edge with prob=p.

1
» Posa '76, Korshunov '77: p > s

= Hamiltonian cycle in G(n, p) whp.

n

+ Johansson-Kahn-Vu ’08:
+ p=wnh " (logn)”" bt s whp. G(n, p) has a K -factor.

s p=om Y (logn)¥ ") = whp. G(n, p) has no K -factor.



Randomly perturbed Model

* “Adding random edges to (dense) deterministic (hyper)graphs decreases the
min-degree / density requirements”

* “Adding (a small number of) random edges to (dense) deterministic
(hyper)graphs decreases the min-degree / density requirements”

+ Bohman-Frieze-Martin ‘03: Suppose G is a graph with 6(G) > an. Add Cn
uniformly random edges to G. Then the resulting graph whp. is Hamiltonian.

« In other words, G U G(n, C/n) is Hamiltonian whp.



Clique-factors in randomly perturbed graphs

* Johansson-Kahn-Vu "08:

+ p=wnh " (logn)” (g PE whp. G(n, p) has a K -factor.

+ p = o(n~*"(log n)*" = whp. G(n, p) has no K -factor.

+ Balogh-Treglown-Wagner "19: Suppose &, = {G : 6(G) > a| G| }
+ p=wn ) => VG e € whp. GU G(n,p) has a K -factor.

+ p=o0(m ") = there exists G’ € €, whp. G'U G(n, p) has no K -factor.



Clique-factors in randomly perturbed graphs

+ Balogh-Treglown-Wagner is tight for small o € (0,1/7).

+ H.-Morris-Treglown, '21 determined the optimal p for almost all a:

+ For2 <k < rand 1—é<a< l—k_l,

r

+ p=wn ) => VG e €, whp. GUG(n,p) has a K -factor.

¢ p = o(n~**) = there exists G’ € € whp. G’ U G(n, p) has no K -factor.
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Perturbed k-graphs

+ Krivelevich-Kwan-Sudakov ’16, for k > 3, a > 0,

+ p=wn' ™ => VHwith §,_,(H) > an, whp. H U H®(n, p) has a perfect
matching.

« They also raised the analogous question for weaker minimum degree conditions.

* Chang-H.-Kohayakawa-Morris-Mota, "21. Their result holds for all H satisfying
5,(H) > an* !,

« A general result for F-factors was obtained, tight e.g. when F is k-partite,
F = K;~, or F is the Fano plane.



Perturbed k-graphs: clique-factors?

+« First Goal: fork > 3, a > 0,

» p=aw(p,) = YHwith §_,(H) > an, whp. HU H®(n, p) has a K;-factor,
where p, . is the threshold for almost K*-factor in H®(n, p).

* Ameta problem:fork >3, 1 <d<k a>0,

+ p=w(py) = VHwith § (H) > an*~¢, whp. HU H®(n, p) has a spanning
subgraph G, where p, is the threshold for the existence of an “almost
spanning copy of G” in H¥(n, p).

+ Further Goal: work out the whole interval for a € (0,1).
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Perturbed k-graphs: clique-factors

# (Chang-H.-Morris, 22++) for k > 3, a > 0, 3ry = ry(k), for r > r,

+ p=aw(p,) = YHwith §,_,(H) > an, whp. HU H¥(n, p) has a K,-factor,
where p; . = n1=7/(%) is the threshold for almost K*-factor in H®(n, p).

« The case k = 3 is fully resolved: ry(3) = 4

« For k > 4, our proof fails for small cliques.
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Proofs (for K j ). Lower bounds

» Let Hy := K,ff \Ké_a)n. Then a Kj-factor in HyUH O)(n, p) needs n/4 — an
copies from H C)(n, p).

« Then the threshold p, should be the threshold for an almost K j—factor
(Po = n=>"* for this case).
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Prools (for K j ). Upper bounds

+ Easy: by Janson’s ineq, can find an almost K j-factor in H (3)(11, D)

« Absorption method: turn an almost K j-factor to a perfect one

+ Absorber:

“) v, chaete o ou;t\ re,ﬂ Jov refresevts
v

| A Kfﬁ (/Fl' =
G B AR

Tt &l);avL \'(3




Prools (for K j ). Upper bounds

+ Easy: by Janson’s ineq, can find an almost K j-factor in H (3)(n, D)

« Absorption method: turn an almost K j—factor to a perfect one

+ Absorber:



Prools (for K j ). Upper bounds

+ Easy: by Janson’s ineq, can find an almost K j-factor in H (3)(n, D)
« Absorption method: turn an almost K j—factor to a perfect one

+ Absorber:
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Proofs (for K3). Upper bounds

+ Construct an absorber for {u, u,, us, u, }:

Llu{; Qolj% m He.
astvLer- M: QJJ‘” e Hm (n,f),
For i= L4,

() Find aibic; ag Py in M),

Gi) Find v; @ W(aibi)
Fill the pissing eabu by Janson’s .
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Proofs (for K j). Construct absorbers

+ Need to show, given a sequence of en 4-tuples of vertices {Q,,..., Q.. }, find
vtx-disjoint absorbers for them. (By bipartite-template, Montgomery, Kwan)

« If Vi, Q. has in expectation Cn absorbers, Janson’s Ineq allows “greedily
embedding”: tail probability = exp(—Cn) and a union bound on &n - 2"
possibilities for (i, W): in the i-th step, W = unused vertices.

“ A dedicated multi-round embedding scheme (found in a coffee shop in
Valparaiso, Chile) only requires the expectation to be n°
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An Embedding Scheme

+ Given {Qy,...,0,,} s. t. Vi, O, has in expectation n"-! absorbers.

+ VI C [en] of size n"?, Q.,i € I in total have in expectation n absorbers.

+ By Janson’s ineq, can greedily find vtx-disjoint absorbers until there are n"-

Q/'s lett.

+ Now we are done the 1st round.
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An Embedding Scheme - continued

+ Take another copy of H")(n, p)
+ Given {Qy, ..., 0,09} s. t. Vi, O, has in expectation n”! absorbers.
+ VI C [en] of size n"®logn, Q.,i € I in total have in expectation n"? log n absorbers in a vtx set W.

+ By Janson’s ineq, can greedily find vtx-disjoint absorbers until there are n"®log n Q/s lett.

n0.9

. In this round, need to consider ( ) < on’tlog*n possibilities for /, and

nV-3logn

n .
< ( : 9) < onlogn possibilities for the ground set W’ for embedding.
n o

» Now we are done the 2nd round, and it remains to deal with n" logn Q/s.
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An Embedding Scheme - continued

+ Repeat the argument for 11 rounds, with the number of leftover Q;s being

+ n%?, n%%logn, n®"log*n, ..., n"log®n, log”’ n, 0, and we are done.
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T'hanks for your attention.



