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Theorem (Dirac, 1952) Theorem (Pésa, 1962)

If an n-vertex graph G has The random graph G(n, p) is
minimum degree 6(G) > %n, Hamiltonian with probability
then G is Hamiltonian. tending to

Moreover, this bound is best

if it has o (nln n) edges.

possible. if it has w (nln n) edges.

Theorem (Bohman—Frieze-Martin, 2003)

If 6(G) = Q(n), then adding ©(n) random edges makes G
Hamiltonian with high probability.






Schur triples
A Schur triple in AC Nis a triple x,y,z € Awith x+ y = z.
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Question
How large can a subset A C [n] be without being r-Schur?

e —
Ques: What are the largest sum-free subsets of [n]?
Ans: Largest sets have size 7
Aodd = {x € [n] : x =1 (mod 2)}
={xe[n:x> 12}
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How large can a subset A C [n] be without being r-Schur?

Theorem (Hu, 1980)
If A C [n] with |A| > 42, then A is 2-Schur.

Bound is tight
A= U{x €[n] : x=2,3 (mod 5)}

b & B & & 8 &8 & & 86 8 & & 88 &6 & % W)
1 n

Even more colours
Problem is open for r > 3

- Conjecture from Abbott and Wang (1977)
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Theorem (Graham—R&d|-Rucirniski, 1996)

For r = 2, the following hold.

(0) ifp=o(n /), then w.h.p. [n]p is not r-Schur.
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Theorem (R&dI-Rucinski, 1997)

For r > 3, the following hold.

(0) Ifp=o(n '/7), then w.h.p. [n], is not r-Schur.
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Observation
- (Extremal Schur) If |A| > £n, we can take p =0
- (Probabilistic Schur) If |A| = 0, we need p = Q (n~1/2)

Theorem (Aigner-Horev—Person, 2019)
If Al =Q(n) and p=w (n_2/3), then AU [n], is 2-Schur w.h.p.

Observation
Result is best possible for |A| < 7: take A sum-free, and /' U [n],
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We complete the picture for sets |A| > 5§

Theorem (D.—Knierim—Morris, 2022+)
For n,t € N with 5 +t < 32, define p(n, t) = min { b
(0) 3AC [n], |Al = 5 +t, such that if p= o (p(n, t)), then
AU [n]p is w.h.p. not 2-Schur.
(1) VAC[n], |A| =3 +t, and p = w(p(n, t)),
AU [n]p is w.h.p. 2-Schur.

Observation
We need t = w (n?/3) before we save any further randomness.
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If AC [n] with |A| =5 +t, and g =w (n™!) is such that AU [n]q
is w.h.p. not 2-Schur, then either |Ajzrge \ A| = O(q™1) or

|[Aodd \ Al = O (¢ 2n"1).

Remark

- If A is not close to an extremal sum-free set, then very little
randomness is needed
- A must contain at least t even numbers
= first case cannot occur if q = w ((nt)~1/2)
> when n'/?® < t < n, we have (nt)~'/2 < min {n=2/3 1}
= Alarge ‘more sum-free” than A,qq



Al

4n/5

n/2

&n




Question
What happens when our initial set is sparse,

Al = o(n)?



Question
What happens when our initial set is sparse,

Al = o(n)?

Observation
No gain if |A| = o (n'/?):



Question
What happens when our initial set is sparse,

Al = o(n)?

Observation
No gain if |A| = o (n'/?):

Let d = A and take A ~ [n]y



Question
What happens when our initial set is sparse,

Al =o(n)?
Observation
No gain if |A| = o (n'/?):
Let d = A and take A ~ [n]y
= AU|[n]p ~ [n]g forq~=d+p



Question
What happens when our initial set is sparse,

Al =o(n)?
Observation
No gain if |A| = o (n'/?):
Let d = A and take A ~ [n]y
= AU|[n]p ~ [n]g forq~=d+p
= not 2-Schur unless p = Q (n_l/z)



Question
What happens when our initial set is sparse,

Al = o(n)?

Observation
No gain if |A| = o (nl/z):
Let d = A and take A ~ [n]y
= AU|[n]p ~ [n]g forq~=d+p
= not 2-Schur unless p = Q (n_l/z)

Question

What happens when our initial set is moderately sparse,
Q (n'/2) = |A| = o(n)?
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Let n,s € N satisfy Q (nl/z) =s<12.

(0) IAC [n], |Al = s, such that if p= o ((ns)~}/3), then
AU [n]p is w.h.p. not 2-Schur.

(1) YAC|n], |Al =s, and , AU [n], is w.h.p.
2-Schur.

Remark

- Lower bound interpolates between n='/2 and n—2/3
- Upper bound is o (n™1/2) when s = & (n!/?)
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(0) IAC [n], |A| = s, such that if p= o ((ns)~}/3), then
AU [n]p is w.h.p. not 2-Schur.

Proof idea
- Take A= [n— s+ 1,n], coloured green
- Algorithmic recolouring of random elements

(a la random Ramsey lower bounds)

» if no good colouring exists = cycle of Schur triples
» Such a cycle unlikely to exist in random elements
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(1) VAC|n], |Al=s,andp=& ((n13s)_1/27), AU [n], is w.h.p.
2-Schur.

Proof idea
- Show the random set [n], is incompatible with any colouring
- Problem: too many colourings for a union bound

- Solution: build a hypergraph
» vertices <> coloured elements
» edges <> small configurations forcing mc Schur triples
= mc-Schur-triple-free colourings — independent sets
- Hypergraph containers: can group together similar colourings
» apply union bound more efficiently O
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Definition (Hypergraph edges)

For every a € A and x,y,z,w € [n] such that a,x,y and a,z, w
form Schur triples, we add a 4-edge on the vertices € and
z,w € V.

Observation
- If are coloured red and z, w are coloured green, we cannot
colour a € A
= Any Schur colouring of AU [n], is independent in H A
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For every € > 0 there is some ¢ = c. such that, if A C [n] is of size
s = Q(n'/?), then there is a collection C of subsets of V/(H ) for

which:
1. For every P C [n] and Schur colouring ¢ of AU P, there is
some C € C such that o C C.
2. Forevery C € C, e(Ha[C]) < esn?.
3. log|C| < cs71/3n?/3logn.



Proposition
For every € > 0 there is some ¢ = c. such that, if A C [n] is of size
s = Q(n'/?), then there is a collection C of subsets of V/(H ) for
which:

1. For every P C [n] and Schur colouring ¢ of AU P, there is

some C € C such that o C C.
2. Forevery C € C, e(Ha[C]) < esn?.
3. log|C| < cs71/3n?/3logn.

Goal
Show that for every container C € C, the probability that P ~ [n],
admits a Schur colouring ¢ of AU P with ¢ C C is very small.
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Partition
Given C C V/(Ha), we can partition [n] into four sets:

- missing elements Mc: i¢ CN ,CN Vg

- elements :ieCn ,i¢CNVg

- green elements Ge: ¢ CN ,ie CN Vg
two-coloured elements T¢c: ie CnN - ,CN Vg

Observation
- C prescribes the colours of the elements in and G¢

- Elements from M cannot be coloured
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Type |
Linearly many elements are missing: |Mc| > en

= very unlikely that all of them will be missing in P ~ [n],

Type Il
Quadratically many Schur triples in or G¢

= (Janson) whp such a triple appears in P ~ [n], — mc

Type Il
None of the above
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Ingredients

- Almost all elements in [n] receive at least one colour

- Very few Schur triples in  , G¢
- Ha[C] has very few edges

Recipe

Green's Removal Lemma + Stability + Janson
Outcome x1 4+ x
P ~ [n], almost surely + -+

contains a wicket

No way to colour x1, X2, x3 | |









n12

-y
R, |

n=2/3

— [A]
n"2 en n/2 an/5 n
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